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Vibrational Modes of Nano-Template Viruses
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Viruses have recently attracted attention as biological templates for assembly of nanostructures
and nanoelectronic circuits. They can be coated with metals, silica or semiconductor materials and
form end-to-end nanorod assemblies. Such viruses as tobacco mosaic virus (TMV) and M13 bac-
teriophage have appropriate cylindrical shape and particularly suitable dimensions: M13 is 860 nm
long and 6.5 nm in diameter, while TMV is 300 nm long, 18 nm in diameter and with a 4 nm in
diameter axial channel. The knowledge of vibrational, i.e. quasi-acoustic phonon, modes of these
viruses is important for material and structural characterization of the virus-based nano-templates
and for in-situ control of the nanostructure self-assembly. In this paper we report on calculation
of the dispersion relations for the lowest vibrational frequencies of TMV and M13 bacteriophage
immersed in air and water. We analyze the damping of vibrations in water and discuss application
of micro-Raman spectroscopy for control of the virus-based self-assembly processes.
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1. INTRODUCTION such as viruses, as nano-templates for the fabrication.
Specifically, rod-shaped viruses, such as tobacco mosaic
virus (TMV) and M13 bacteriophage, have been utilized
as biological templates in the synthesis of semiconductor
and metallic nanowires.® 'Y Genetically modified TMV and
M13 viruses have been successfully used for self-assembly
of nanomaterials into liquid crystals, films, and fibers.” It
is expected that genetically programmed viruses will con-
tribute to the next generation of nanoelectronic circuits and
optoelectronic devices. Both TMV and M13 viruses have
cylindrical shape, which is very convenient for applica-
tions as nano-templates (see Fig. 1). M13 bacteriophage
is 860 nm long and 6.5 nm in diameter, while TMV is
300 nm long, 18 nm in diameter and with a 4 nm in diam-
eter axial channel.®
Since these viruses have the diameters of the same order
of magnitude as diameters of semiconductor nanocrystals
and nanowires, elastic vibrations of TMV and M13 viruses
should manifest themselves in low-frequency Raman
scattering spectra. The theoretical understanding of the
low-frequency vibrational modes of the viruses is impor-
tant for interpretation of Raman (Brillouin) spectra and
monitoring the aforementioned self-assembly processes.
*Author to whom correspondence should be addressed. For example, low-frequency vibrational modes of pure

Fundamental limitations for the conventional comple-
mentary metal-oxide semiconductor (CMOS) technology
scaling beyond certain limits motivate the search for
alternative fabrication technologies and self-assembly
concepts." One of the important problems associated with
actively pursued semiconductor self-assembly technique
such as stress-driven molecular-beam epitaxy (MBE) self-
assembly”™ is the size dispersion of the components. It is
extremely difficult to manufacture identical or nearly iden-
tical structures at nanoscale. The MBE grown nanowires,
nanorods or quantum dots, proposed as elements in future
nanoelectronic circuits, come with size variation despite
serious efforts on size, shape and position control in the
last decade or so.*” Self-assembly using chemically pro-
duced templates is another promising approach.®”’ But,
though in lesser degree, it also suffers from the same prob-
lem: nanopores are also not identical in size.

A most recently proposed nano-fabrication techni-
que,*!* which presents a radical departure from con-
ventional approaches, is utilization of biological objects,
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Fig. 1. Tllustration of an actual view and simplified models of the
tobacco mosaic virus (TMV) and M13 bacteriophage. Virus sizes are
shown on the elastic cylinders used for modeling the viruses.

TMV and silica coated TMV are different. The same can
be said about low-frequency vibrational modes of a sin-
gle functionalized TMV nanorod and end-to-end connected
assembly of TMV nanorods, which form a nanotubular
superstructure.® Thus, signatures of these unique vibra-
tional modes observed in Raman (Brillouin) spectra can
be used to monitor and help to control the process of
virus functionalization, i.e. coating with different materi-
als, and self-assembly, i.e. attachment to other objects such
as quantum dots, carbon nanotubes, etc.; or forming end-
to-end superstructures. Information, which can be obtained
with the help of Raman spectroscopy, is particularly valu-
able since other direct characterization techniques, such as
transmission electron microscopy (TEM), are difficult to
carry out and require special treatment of the samples.

Recent developments in molecular biology and instru-
mentation for Raman spectroscopy have strongly increased
the usefulness of the micro-Raman spectroscopy for gain-
ing insights into internal virus structure and viral assembly
pathways.!! At the same time, the Raman spectroscopy of
viruses was mostly limited to large wave number region of
600 cm™' and above.!' The latter is understandable since
the main motivation was the study of internal virus compo-
sition, localized vibrations of multiply bonded or electron-
rich groups in proteins, or viral assembly pathways. Here,
our task is different. We look at viruses as generic cylin-
drical nano-rods used as templates, and will utilize the
obtained information on their quasi-acoustic vibrations for
interpretation of experimental Raman spectra and extrac-
tion of mechanical and structural information of virus-
based functionalized assemblies.
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There are only few reports on the estimation of vibra-
tional modes in organic nanostructures: spherical virus par-
ticles have been considered in Refs. [12, 13] and thin-wall
microtubules have been studied in Ref. [14]. Preliminary
results for the rod-shaped viruses were reported by us
without details of the calculations.” Here, we present
results of our calculations of phonon spectra of TMV and
M13 viruses immersed in air and water. Results for water
are important since this is the medium of virus synthe-
sis, purification and assembly processes. Water is also a
notoriously strong infrared (IR) absorbing medium, and
generally samples can be investigated more favourably by
Raman rather than by Fourier transform infrared (FTIR)
methods. The rest of the paper is organized as follows.
In Section 2 we present our analytical approach to mod-
eling of vibrational modes in cylindrically-shaped viruses.
Results and discussion are presented in Section 3. We give
our conclusions in Section 4.

2. ANALYTICAL APPROACH

Taking into account the size and shape of the viruses
(M13 bacteriophage is 860 nm long and 6.5 nm in diam-
eter, while TMV is 300 nm long, 18 nm in diameter)
we employ elastic continuum approximation. It has been
shown that continuum approach works remarkably well
even for nanometer thick semiconductor structures and sin-
gle wall carbon nanotubes.'®'7 Due to the fact that the
length of the viruses is much larger than their diame-
ter, we model TMV and M13 as infinite cylinders (see
Fig. 1).

The low-frequency vibrational modes of cylindrical
viruses are found as eigenmodes of the equation of motion
for the displacement vector u. Due to the axial symme-
try of the problem, the equation of motion can be solved
analytically in cylindrical coordinates (r, ¢, z). First, we
present the solution of the equation of motion for a free-
standing elastic cylindrical tube with the internal radius R,
and the external radius R, (for TMV R, =2 nm and R, =
9 nm). Then, we explain how to take the limit R, — 0 (the
case of M13) and how to consider the case of an elastic
tube immersed in water.

The displacement vector that satisfies the equation of
motion for an elastic cylindrical tube can be written as:'®

u, = (ﬂ(’) o %I’,(r)jtkdzz—fr))

dr
x cos (mep) cos (kz)e'™
uy = (—?G(r)%——d}:}fr) —k?l@(r)) £,

x sin (ma) cos (kz)e'!
u, = (=kG(r)+k?F,(r)) cos (me) sin(kz) e
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where

G(r) = Cy J, (k) + Co,sz(k/r)

(2)
Fn(r) :Cn,]‘Im(krr)+C11,2Nm(k1r) (n: 1’2)
g L g g @ s
k,"z—;—k“, k;':—7—k_ (3)
cr cr

In Egs. (1)—(3), m is the angular quantum number, k is
the axial wavenumber, w is the vibrational frequency; J,,
and N,, are Bessel functions of the first and second kind;
and ¢, and ¢, are longitudinal and transverse velocities
of sound, respectively. Note that in addition to Eq. (1)
there are three more forms of the solution of the equation
of motion. These forms can be obtained by applying to

Eq. (1) one or two of the transformations:

cos(k z) — sin(k z)

sin(m @) — —cos(m ¢);

cos(m @) — sin(m ¢),
sin(kz) = —cos(kz)

“4)

There are six independent constants C; ; in Eq. (1)

[see Eq. (2)]. To find these constants for the case of a

free-standing tube (immersed in air) we have to apply

the boundary conditions that the radial components of the

stress tensor 7 vanish on both internal and external sur-
faces of the tube:

Tm(|r:Rj:0 (a:r’ ¢*Z’ j:172) (5)
where
du, - S fu, 1du ou.
T = pl:C,z = +(c; —2c,‘)<7 + ;9—<Z + 8:)]

(L3, Buy _ty

RS <; ad ot ar r > (©)

o du,  du,
Tr: . p Cl aZ + W

and p is the mass density. Thus, one has a homogeneous
system (5) of six linear equations with respect to six con-
stants C; ;. The obtained system has nonzero solutions
only when the determinant of this system is equal to zero.
The above determinant is a function of the vibrational fre-
quency w; therefore, the zeros of this determinant define a
discrete spectrum of vibrational frequencies and the result-
ing sets of constants C; ; define corresponding displace-
ment vectors (1). Note that the displacement vector (1) is
defined to an arbitrary multiplier, which is found by nor-
malizing the displacement vector to unity.

For the free-standing viruses without an internal chan-
nel, e.g. M13 bacteriophage in air, the solution of the
equation of motion can be obtained in the similar way.
Since in this case we have a cylinder instead of the tube,
the displacement vector (1) should be finite at r = 0.
Taking into account the fact that the Bessel function N,,
in Eq. (2) diverges at r = 0, the above condition requires
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three coefficients C, ,(n =0, 1, 2) to be zero. At the same
time, there is only one surface in the cylinder; therefore,
the boundary conditions (5) give us only three equations.
Thus, we have a homogeneous system of three linear equa-
tions with respect to three constants C, (n =0, 1,2),
which defines the vibrations modes in the same way as for
the tube.

To calculate vibrational modes of viruses immersed in
water, we employ the complex-frequency approach that
was originally developed to describe vibrations of an elas-
tic sphere embedded in an elastic medium.'**°

3. RESULTS AND DISCUSSION

It is natural to assume that the elastic parameters of viruses
are close to the parameters of a protein crystal. The longitu-
dinal sound velocity ¢, was experimentally found to be
1817 m/s,*' 1784 m/s,”> and 1828 m/s** for lysozyme,
ribonuclease, and hemoglobin crystals, respectively. One
can see that the elastic parameters of different protein crys-
tals have close values. For definiteness, we assume that the
elastic parameters of viruses coincide with the parameters
of lysozyme protein crystal from Ref. [21]. The values of
all elastic parameters used in our simulations are summa-
rized in Table I.

The Raman intensity of vibrational modes in cylindrical
viruses depends on the polarization of incoming and out-
going light. When both the incoming and outgoing light
are polarized along the viral axis, only vibrations with cir-
cumferential quantum number m = 0 and axial quantum
number k = 0 can be observed in the Raman spectrum. In
the case of the crossed polarization, only vibrations with
m = =+1 and kK =0 can be Raman active. Finally, when
both the incoming and outgoing light are polarized per-
pendicularly to the viral axis, only vibrations with m = 0;
42 and k = 0 can give nonzero Raman intensities. On
the other hand, the dispersion of vibrational frequencies
(dependence on k) is important for calculation of the vibra-
tional density of states. Based on the above facts, we study
in detail the vibrational modes with m =0, £1, &2 and
their k-dependence.

Figures 2 and 3 show the calculated lowest-frequency
dispersion curves for vibrations with m = 0, +1, £2 for
M13 and TMYV, respectively. As one can see from Egs. (1)
and (4), vibrational modes with m = 0 can be divided
into radial-axial (u4 = 0) and torsional modes (u, =0
and u. = 0). While the torsional vibrations have the same
frequencies for the viruses immersed in air and water, the

Table I. Sound velocities and mass densities for viruses and
water used in the simulation.

¢, (m/s) ¢, (m/s) p (g/cm?)

virus 1817 915 1.21
water 1483 0 1
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Fig. 2. Dispersion of the lowest vibrational frequencies with circumfer-
ential quantum numbers m =0, +1, +2 for M13 bacteriophage. (a) Solid
(dashed) lines correspond to the radial-axial vibrations with m = 0 in air
(water). Dotted lines correspond to the torsional vibrations with m = 0.
Dash-dotted line marks the sound velocity of water. (b) Solid (dashed)
lines correspond to the elastic vibrations with m = +1(m =+£2) in air.

radial-axial vibrations are different. The main difference
consists in the fact that radial-axial vibrations in air are
harmonic while radial-axial vibrations in water are damped
when @ > ke™, i.e. the frequency has a nonzero imag-
inary part that is equal to the inverse lifetime and also
defines the broadening of the Raman peak. When both
m =0 and k =0, the radial-axial vibrations split into purely
radial and purely axial, as seen from Eqs. (1) and (4).
The radial vibrational mode with the lowest frequency is
called the radial breathing mode. Like torsional modes,
axial modes with k = 0 are not damped and are the same
when the exterior medium is air or water. On the contrary,
the damping is in its maximum for radial modes with k = 0.
Comparing Figures 2 and 3, one can see that the pres-
ence of the axial channel in TMV substantially changes the
low-frequency vibrational modes. For example, the lowest
radial-axial acoustical branch of M13 in water splits in two
parts for TMV in water. Moreover, there is only one radial
mode in Figure 2(a), while there are two such modes in
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Fig. 3.  Dispersion of the lowest vibrational frequencies with circumfer-
ential quantum numbers m = 0, 1, 42 for tobacco mosaic virus. Nota-
tions are the same as in Figure 2.

Figure 3(a). Finally, the radial mode is the mode with the
lowest nonzero frequency for TMV, while it is the second
lowest nonzero frequency for M13.

Since the vibrational modes with m =0, +1, +2 and k =
0 can be observed in the Raman scattering spectra, it is
important to visualize the displacements u corresponding to
such vibrations. It is seen from Egs. (1) and (4) that the dis-
placement u does not depend on the variable z when k = 0.
Therefore, it is enough to visualize the vibrations of a circu-
lar viral cross-section. Figure 4 presents such visualization
for vibrations of M13 in air. Other cases, such as vibra-
tions of TMV or vibrations in water can be considered
analogously. For the eigenfunctions shown in Figure 4, the
corresponding vibrational frequencies increase from top to
bottom; the values of these frequencies can be found in
Figure 2 (k = 0). The first two vibrational modes with
m = 0 and the first vibrational mode with m = 1 have zero
frequencies and correspond to the rigid body motions. The
3rd, 6th, and 8th modes with m = 0 as well as the 2nd,
4th, and 7th modes with m = 1 and 2 are axial vibrations.
The fourth mode with m = 0 is the radial breathing mode,
while the 5th, 7th, and 9th modes with m = 0 are torsional
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Fig. 4. Schematic pictures of the viral cross-section displacements for
vibrations with quantum numbers k =0 and m =0, 1, 2 of M 13 bacterio-
phage in air. Displacements for vibrations with m = — 1(m = —2) can be
obtained by rotating the displacements shown for m = 1(m = 2) by 90°
(45°) around the symmetry axis normal to the viral cross-section. The
equilibrium position is shown with thin lines. The thick lines show the
maximum deviation from the equilibrium. The corresponding vibrational
frequencies increase from top to bottom. The values of the frequencies
are shown in Figure 2 (k = 0). Note that three small cross-sections have
zero vibrational frequency and correspond to the rigid body motions.

vibrations. The first and sixth modes with m = 2 represent
vibrations that squeeze the entire virus in one direction,
while the 3rd, 5th, and 8th modes with m =2 correspond to
vibrations, where only the central part of the virus is peri-
odically squeezed. The remaining four modes with m = 1
have a distinct translational vibration of the central part of
the virus.

Radial modes with m =0 and k = 0 are particularly
important since they usually have the maximum intensity
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TMV /air (m = 0)

®=4.90cm™!

Fig. 5. Two lowest-frequency radial modes with quantum numbers
k =0 and m = 0 for tobacco mosaic virus in air. The direction and length
of arrows correspond to the direction and magnitude of the displacement
vector.

in the Raman scattering spectra. Figure 5 shows the vibra-
tional frequencies and the corresponding displacement
fields for the first two radial modes of TMV in air. While
the radial breathing mode represents a cyclic increase and
decrease of the viral radius — “breathing,” the second radial
mode reveals two synchronized vibrations. When TMV is
immersed in water, the frequencies of the radial modes
increase in accordance with Figure 3(a). The quality fac-
tor Re(w)/Im(w) for radial vibrations of TMV in water
is about 3.6 for the radial breathing mode and about 10
for the second radial mode.'® It is interesting to note that
unlike TMV, the frequency of the radial breathing mode
of M13 decreases, when M13 is moved from air to water
[see Fig. 2(a)]. The quality factor for the radial breath-
ing mode of M13 is also about 3.6."° The relatively large
quality factor for radial vibrations of M13 and TMV in
water allows one to observe these vibrations in the Raman
spectrum, despite the damping.

Calculated low-frequency vibrational modes of TMV
and M 13 viruses are required for interpretation of the low-
frequency Raman (Brillouin) scattering spectra from pure
viruses and viruses coated with some materials. The dif-
ferences in Raman spectra can be used to monitor the
coating and nano-assembly process. It may also help to
assess how successful the virus coupling to quantum dots
or other elements of nano-assemblies in a process simi-
lar to the one reported for carbon nanotubes-quantum dots
assemblies.”® Further investigation of the low-frequency
vibrational modes in nano-template viruses may lead to
the development of in-situ process monitoring of the self-
assembly process of the hybrid nanoelectronic circuits.

4. CONCLUSIONS

In conclusion, we investigated vibrational modes of TMV
and M13 viruses, which have been proposed for utiliza-
tion as nano-templates for chemical assembly of nano-
electronic components. Obtained information is important
for interpretation of Raman (Brillouin) spectra and control
of the assembly process. The radial breathing modes of
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TMV and M13 viruses in air are found to be 1.85 cm™
and 6.42 cm™', respectively. If the viruses are in water,
the above frequencies become 2.10 cm™' and 6.12 cm™',
respectively. The quality factor Re(w)/Im(w) for radial
vibrations of TMV in water is about 3.6 for the radial
breathing mode and about 10 for the second radial mode.
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